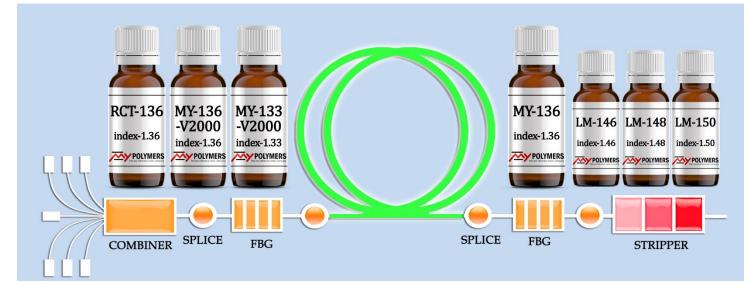


Recoating Materials for Fiber Lasers


Dedicated Recoating Materials are optimized for the specific requirements of recoating.

MY Polymers has a wide range of dedicated recoating materials. Dedicated recoating materials enable higher reliability, compared to the old practice of using Primary Coatings for recoating.

There are contradicting requirements between Recoating Materials and Primary Coatings (see comparison table below). Our materials have been optimized for Recoating, and they are replacing Primary Coatings in most recoating applications.

Some typical recoating applications are shown in the drawing below which shows a typical block diagram for a fiber laser. Recoating is required for the splices, for pump power combiner, for FBG components, couplers, etc.

For Cladding Power Strippers (CPS), customers select the higher index, Low Modulus (High Flexibility) LM-14X. A growing number of customers are adopting the Cascaded CPS design, using a cascade of recoating segments with a gradually higher index. This structure enables a gradual dissipation of heat, resulting in dramatically improved reliability.

Dedicated Recoating Materials are optimized for the Recoating task.

In the past, the original primary coating was used as a recoating material. However, there are major differences and contradictions between the requirements from these materials.

Due to these contradictions (see table) manufacturers of fiber lasers, optical amplifiers, and fiber-optic components are switching to the new Dedicated Recoating Materials, which were optimized for these specific applications.

PROPERTY ADHESION	RECOATING MATERIAL HIGHEST, FOR RELIABILITY	PRIMARY COATING LIMITED, FOR STRIPPING	For Recoating, use our dedicated, optimized re-coating materials. Original Primary Coatings have a lower adhesion (to enable stripting) and they are less
FLEXIBILITY	HIGHEST, FOR THERMAL ENDURANCE	LIMITED, FOR ROBUSTNESS	stripping) and they are less flexible. Therefore, they have lower endurance under thermal cycling and thermal shock

The new WT line for very WET conditions

In wet environments, our new WT recoating materials demnostrates the highest adhesion endurance under wet conditions. This product line has the same advantgaes of the LM product line, plus the increased adhesion under wet conditions. However, the improved adhesion under wet conditions comes at a price: The WT products are more sensitive in the uncured state, and their shelf life is limited to 6 months, compared to 12 months for the LM products.

Notable members of this new family include WT-142 (RI 1.42), WT-143 (RI 1.43) and WT-1455 (RI 1.455, same as silica).

The leading Recoating Materials with an index of 1.36

These materials are intended for recoating pump power combiners, splices, FBG, couplers, etc. The following table includes the major properties of the leading products in this category. Leading Recoating materials with matching 1.36 index include RCT-136, MY-136, and MY-136-V2000. These products have High Flexibility, Strong Adhesion, and break-through

Product	RI @ 950nm	Adhesion g/cm	Elastic Mod. MPa	Viscosity CPS	Tensile MPa	Elong. @ Break %	Shelf Life, months
RCT-136	1.363	150	43	1700	5.4	56	9
MY-136	1.360	110	20	750	4.7	45	12
MY-136-V2000	1.363	50	53	1700	6.0	50	12
LM-136-EA	1.363	225	17	1700	4.0	80	9

performance under thermal cycling, thermal shock and heat-damp testing.

Recoating materials with the lowest index

Some customers use lower index recoating materials	Product	RI @ 950nm	Adhesion g/cm	Elastic Mod. MPa	Viscosity CPS	Tensile MPa	Elong. @ Break %	Shelf Life, months
with an index of 1.33 or 1.32.	MY-133-V2000	1.329	9	5.2	2900	2.4	60	12
Some popular materials are	MY-133-EA	1.333	27	3.6	2300	1.0	45	6
shown in the following table:	MY-132-A	1.322	7	0.4	2600	0.3	80	12

The Low Modulus LM products for Recoating of Cladding Power Strippers

A different, specialized application is recoating of cladding light strippers. The new trend of using Cascaded strippers requires a set of materials with different refractive index. The combination of High Flexibility and high bond strength, provides a dramatic imp

dramatic improvement in reliability. under thermal cycling and thermal	Product	RI @ 950nm	Adhesion q/cm	Elastic Mod. MPa	Viscosity CPS	Tensile MPa	Elong. @ Break %	Shelf Life, months
shock. The following table	LM-146	1.452	1900	35	1400	7	160	12
summarizes the important properties	LM-148	1.472	500	42	1300	6.7	160	12
of some common products used for	LM-150	1.477	1600	23	1800	4	450	12
this application.								

About MY Polymers Ltd.

Distinguished by its total focus on low refractive index materials, MY Polymers is a leader in this field.

MY Polymers has been active in the field of Low Refractive Index Optical Coatings, Adhesives and Polymers since 2004. The company develops, produces, and sells primary coatings for optical fibers, recoating materials, optical adhesives, bio-photonic materials, and various other low index polymers, coatings and adhesives.

MY Polymers is ISO certified. We serve the global Photonics and Electronic Display industries, with customers in North America, Asia, and Europe.

info@mypolymers.com Tel: 972-8-9350101 Golda Meir Str., Weizmann Science Park Ness Ziona 7403648, Israel